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Motivation
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There is evidence that real time information improves forecasting 
with structural models

 It usually focuses on GDP, including CNB research …

• Arnoštová, K., Havrlant, D., Růžička, L., & Tóth, P. (2011). Short-Term Forecasting of Czech 
Quarterly GDP Using Monthly Indicators. Finance a Úvěr–Czech Journal of Economics and 
Finance, 6, 566-583

• Michal Franta, David Havrlant, Marek Rusnák (2014). Forecasting Czech GDP Using Mixed-
Frequency Data Models, CNB WP 8/2014

• Marek Rusnák (2013). Nowcasting Czech GDP in Real Time, CNB WP 6/2013

To our knowledge there is no nowcast model for Czech trade

We aim at filling this gap



Data: forecasted variables
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• We aim at nowcasting of the following 8 time series:

• Monthly frequency (4 series): 

• growth rates of export and import (values) 

• growth rates of export and import prices

• Quarterly frequency:

• Real and nominal export and import (national account)

• Data transformations:

• We chose to represent our results using yearly growth rates 

• Our Data sample starts after the Czech Republic joined the E.U.

• To avoid a clear structural break in export and import series



Data: Indicators
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• We have collected a large number of indicators that can help 
in forecasting the variables of interests

1. Variables describing historical development:

Foreign (mainly German, but also US and EA) and Czech

2. Leading indicators

3. Financial variables

• Commodity prices

• Exchange rates



Asynchronous Data Release
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Export and import data are the most affected by publication delay.

Publication delay for selected March 2016 data for the Czech Republic 
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Some stylized facts about Czech trade: trends & cycles
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Czech Trade is aligned with Cyclical Position of the EA

• The alignment is strong especially for exports and investments
• CZ exports are part of the Global Value Chains



Methods Considered

• Univariate techniques:
• Random walk and unconditional mean

• Exponential smoothing

• Univariate AR processes of various lags
• Including Bayesian and TV variants

• Dimension-reduction Techniques:

• Principal component regression

• Partial least squares

• Elastic net regression

• Dynamic Factor Model
9



Univariate Techniques

• Trade values:

• AR(4) to AR(6) clearly outperform other univariate models

• Time-varying methods do not improve over the constant parameter 
AR models

• Import and export price growth

• AR(1) or a variant of exponential smoothing is the best model

• Very similar to random walk prediction

• For backcast and nowcast of trade prices (unlike values), the 
random walk is a benchmark hard to beat 
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Principal Component Regression

The forecasting regressions

����|� = Λ���+ ���,

where Λ� is the vector of principal components, i.e. a low dimensional 
object that spans the variability in data.

• By means of an EM algorithm, the PC can be adapted to missing data 

• using a MIDAS framework, it can be adapted to mixed frequency data

We evaluate the forecasting properties for various number of principal 
components and also consider limited time variation in loadings ��

• The best number of principal components is 4

• Little reason for time variation (even for in-sample evaluation)
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Principal Component Regression: Forecast
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Principal Component Regression: Forecast Errors

Forecast errors of exports and imports are strongly correlated
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Elastic Net Regression

• This is another regularization technique.

����|� = ����

• All coefficients are shrunk to zero (2) and some are set to 
zero by soft thersholding (1)

� = ������ ∑ �� −∑ ������
�

� − ��∑ ��� − ��∑ ��
�

� ,

• The two constants (1) and (2) are estimated by cross-
validation:

• Separately for each time horizon and each variable of interest



Elastic Net Regression: Important Predictors

• Predictors selected by elastic net widely differ across 
variables and horizons:

• Exports and Imports:
• For backcast, own lags tend to dominate

• For nowcast, the new orders (domestic and foreign) and sentiment (German) 
dominate

• For short-term fcast, also domestic variables (labor market) enter

Price Indexes
• For backcast, nowcast and short-term fcast a bunch of domestic and foreign 

variables (commodity prices, senitiments, new orders, …) are important

• Not only costs, but also cyclical variables play a role



Elastic Net Regression: Forecast /1



Elastic Net Regression: Forecast /2



Prediction errors are correlated

Export and import forecast errors are strongly correlated



Dynamic Factor Model

The Dynamic Factor Model is casted in the state space form.

• The state equation:
�� = ������ +⋯+������ + �� .

• The observation equation:

��
� = � + ���� +⋯+ ������ + ��

�.

If coefficients �� ���
� , �, �� ���

�
are known, prediction can be done by the 

Kalman filter
• The Kalman filter machinery easily deals with missing observations

• Also, judgments can be easily incorporated

Estimation: two stage approach by DOZ, GIANNONE & REICHLIN (2011)



Dynamic Factor Model: Forecast of Volumes



Dynamic Factor Model: Forecasting of Prices



Dynamic Factor Model: Forecast Errors

• Unlike Elastic Net, fcast errors are not correlated for short horizons

• DFM fcast errors uncorrelated with PC/ elastic net fcast errors



Forecasts Comparisons: Trade Volumes



Forecast Comparison: Prices Indexes



Conclusions

• There are methods that can improve over univariate 
benchmark for import and export growths

• At lower horizons, the PC regression is a very good predictor

• At longer horizons, the elastic net regression is a clear winner

• Import and export prices

• We were unable to find a method that would beat the univariate 
benchmarks for short horizons, however the DFM could be 
competitive

• For longer horizons, the elastic net regression is a clear winner
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