

1

# A Heterogeneous Agent Model of Energy Consumption and Energy Conservation

Volha Audzei and Ivan Sutóris<sup>1</sup>

Czech National Bank, May 16, 2024

<sup>&</sup>lt;sup>1</sup>Czech National Bank, The views expressed herein are those of the authors and do not necessarily reflect the view of the Czech National Bank



• In this paper we study *energy price shocks - monetary policy-energy conservation* nexus in a heterogeneous framework

Motivation

- Both energy price shocks and monetary policy affect different groups of households differently
  - what are the main channels of distributional effects of monetary policy? Based on HFCS Slacalek et al. (2020): IES, somewhat smaller net interest rate exposure; large indirect effect through labour market
  - heterogeneity in energy consumption: share of raw energy expenditures in household consumption differs with the households' income Figure
- Investment into abatement capital reduces consumption exposure to energy price shocks; can have stimulative effect on economic growth
- Abatement and distributional aspects amplify (change) transmission of monetary policy in response to energy price shocks



- Q1: Does inflation targeting monetary policy influence households' energy conservation decisions?
  - it builds resilience to energy price fluctuations
  - it is beneficial to know if there is any monetary policy influence to be able to communicate these effects to the public and relevant public institutions
- Q2: What type of monetary policy response to energy price shocks is preferable?
  - the persistence and the "shape" of energy price shocks are important
  - we study how each type of policy affects agents' consumption energy intensity and welfare
  - there is a trade-off between stimulating employment and reducing inflation
  - is "looking-through" policy beneficial?
- We do not study: de-anchoring of inflation expectations, inflationary spirals, discretion versus commitment



#### Our results

## • Monetary policy influences households' energy conservation decisions

- through the labour market channel: by influencing the number of constrained agents and precautionary motives
- by changing the return on nominal assets and credit interest
- When energy price shock hits, the policies with weaker response to inflation stimulate employment and result in larger energy capital holdings, but larger inflation and larger agents' welfare:
  - larger stock of energy capital reduces impact of energy price shocks on consumption volatility
  - better prospects of finding a job reduce future consumption volatility
- The policy of looking-through energy prices (reacting to core inflation) does not bring benefits in the medium term as it initially under-reacts, and over-reacts in the subsequent periods



- There is a growing literature on heterogeneous agents and distributional effects of monetary policy:
  - empirical work: e.g. Slacalek et al. (2020);

Literature

- theoretical framework with endogenous labour market: Challe et al. (2017), Ravn and Sterk (2021);
- We relate to the literature on policy response to energy price shocks in HANK or TANK:
  - Auclert et al. (2023), Chan et al. (2022), Pieroni (2023):
  - we add abatement and energy conservation angle;
- We relate to the general equilibrium models of energy consumption and emissions:
  - Varga et al. (2022), Campiglio et al. (2022), Kiuila and Rutherford (2013)
  - they formulate abatement capital and costs in terms of reducing emissions



- Search and matching frictions in the labour market, endogenous labour market tightness
  - vacancy costs, exogenous separation rate
- Households: employed, unemployed, firm owners (out of the labour-force)

#### Equations

- consume non-energy and energy goods (CES aggregator)
- supply labour (inelastically) or earn firms
- invest into abatement capital, nominal assets, physical capital (firm owners)

## • Firms : Equations

- use energy, labour and physical capital to produce non-energy goods
- Government: provides (unemployment benefits) and collect taxes
- Central bank (fully credible): conducts monetary policy in response to the deviation of inflation and/or output from the steady state

- We employ assumption from Challe et al. (2017) of perfect risk-sharing among the *employed workers*.
  - households are grouped in identical families, a "planner" optimizes family wealth and redistributes (averages) nominal assets among the employed workers
  - guess-and-verify: first period unemployed do not "save their savings". The borrowing limits for unemployed workers is zero
- We set the borrowing limits for capitalists
- We adopt a similar assumption to holdings of abatement capital details
  - employed and unemployed workers live in separate "residencies" and move between the residencies when their employment status changes
  - workers can not take their abatement capital with them, which is taken by the state
  - guess-and-verify: unemployed workers do not invest into the abatement capital; steady state level is maintained from unemployment benefits
- As a result, we have four groups of households, but all the the channels we need
- The abatement capital is produced domestically



CNB CZECH NATIONAL BANK

• Parameters in the policy rule are constant!

$$\frac{R_t}{\bar{R}} = \left(\frac{R_{t-1}}{\bar{R}}\right)^{\rho_r} \left[ \left(\frac{E_t \Pi_t^p}{\bar{\Pi}}\right)^{\phi_\pi} \left(\frac{E_t y_t}{\bar{y}}\right)^{\phi_y} \right]^{1-\rho_r} \epsilon_t^r.$$

$$E_t \Pi_t^p = (E_t \Pi_t^c)^{1-\phi_e} (E_t \Pi_t^e)^{\phi_e}.$$

- Economy is initially in the steady state
- Model is linearised around the steady state
- Inflation expectations are perfectly anchored

Baseline policy rule:  $\phi_y = 0$ ,  $\phi_{\pi} = 2$ . Calibration

- MP shock
- Energy price shock

Policy simulations Overview Simulations Welfare Rigid benefits Conlcusions

## Monetary policy shock: Baseline policy rule

CNB CZECH NATIONAL BANK



Percentage deviations from the steady state; inflation and interest rates are annualized p.p. deviations ; unemployment is p.p. deviations.



CNB CZECH NATIONAL BANK



All responses are reported as percentage deviations from the steady state.



## Energy price shock: baseline policy rule





Percentage deviations from the steady state; inflation and interest rates are annualized p.p. deviations; unemployment is p.p. deviations.





### We vary the coefficients in the policy rule and the measure of inflation

|                             | $\phi_{\pi}$ | $\phi_y$ | inflation measure |
|-----------------------------|--------------|----------|-------------------|
| baseline                    | 2            | 0        | $E_t \Pi_t^p$     |
| baseline+output             | 2            | 0.9      | $E_t \Pi_t^p$     |
| looking-through             | 2            | 0        | $E_t \Pi_t^c$     |
| optimal SR                  | 1.1          | 2.31     | $E_t \Pi_t^p$     |
| optimal SR, looking-through | 1.1          | 1.53     | $E_t \Pi_t^c$     |



## **Policy simulations**





Percentage deviations from the steady state; inflation and interest rates are annualized p.p. deviations ; unemployment is p.p. deviations.



## Policy simulations: Energy variables





Percentage deviations from the steady state.







Percentage deviations from the steady state.







Percentage deviations from the steady state.







## • Monetary policy has an effect on consumption energy intensity through

- asset returns and interest rate
- labour market, by changing the number of HtM and precautionary motives
- Too restrictive monetary policy in response to the energy price shock dampens investment into abatement capital, which
  - insulate the economy against the energy prices fluctuations
  - can stimulate domestic production
- The agents' welfare is larger when consumption is more resilient to energy price shocks, and there are more job opportunities





- Auclert, A., H. Monnery, M. Rognlie, and L. Straub (2023, August). Managing an Energy Shock: Fiscal and Monetary Policy. NBER Working Papers 31543, National Bureau of Economic Research, Inc.
- Campiglio, E., S. Dietz, and F. Venmans (2022, December). Optimal climate policy as if the transition matters. LSE Research Online Documents on Economics 117609, London School of Economics and Political Science, LSE Library.
- Challe, E., J. Matheron, X. Ragot, and J. F. Rubio-Ramirez (2017, July). Precautionary saving and aggregate demand. Quantitative Economics 8(2), 435-478.
- Chan, J., S. Diz, and D. Kanngiesser (2022, October). Energy Prices and Household Heterogeneity: Monetary Policy in a Gas-TANK. MPRA Paper 115975, University Library of Munich, Germany.
- Hall, R. E. (2005, August). Employment Efficiency and Sticky Wages: Evidence from Flows in the Labor Market. The Review of Economics and Statistics 87(3), 397-407.
- Kiuila, O. and T. Rutherford (2013). The Cost Of Reducing CO2 Emissions: Integrating Abatement Technologies Into Economic Modeling. *Ecological Economics* 87(C), 62–71.
- Pieroni, V. (2023). Energy Shortages and Aggregate Demand: Output Loss and Unequal Burden from HANK. European Economic Review.
- Ravn, M. O. and V. Sterk (2021). Macroeconomic Fluctuations with HANK & SAM: An Analytical Approach. Journal of the European Economic Association 19(2), 1162–1202.
- Slacalek, J., O. Tristani, and G. L. Violante (2020). Household balance sheet channels of monetary policy: A back of the envelope calculation for the euro area. *Journal of Economic Dynamics and Control 115*, 103879.
- Varga, J., W. Roeger, and J. in 't Veld (2022). E-QUEST: A Multisector Dynamic General Equilibrium Model With Energy And A Model-Based Assessment To Reach The EU Climate Targets. *Economic Modelling* 114(C).



### We vary the coefficients in the policy rule and the measure of inflation

|                 | $\phi_{\pi}$ | $\phi_y$ | inflation measure |
|-----------------|--------------|----------|-------------------|
| baseline        | 2            | 0        | $E_t \Pi_t^p$     |
| baseline+output | 2            | 0.9      | $E_t \Pi_t^p$     |
| looking-through | 2            | 0        | $E_t \Pi_t^c$     |
| optimal SR      | 1.1          | 5        | $E_t \Pi_t^p$     |
| optimal SR      | 1.1          | 5        | $E_t \Pi_t^c$     |







#### Percentage deviations from the steady state



## Consumption: Rigid benefits





#### Percentage deviations from the steady state



## Share of energy expenditures, income quantiles





Source: Eurostat based on national budget surveys



## Share of Energy Expenditures: Income Quantiles





#### Source: National budget survey





Each household maximizes the following utility subject to their expected employment status.

$$U_t(h) \equiv E_t \sum_{j=0}^{\infty} \beta^j \frac{\mathbb{C}_{t+j}(h)^{1-\mu}}{1-\mu},$$
 (1)

 $\mu$  - relative risk aversion;  $\mathbb{C}$  - composite consumption good;  $E^s$  - energy services; C - non-energy consumption good. The composite consumption good is:

$$C_t(h) = \left[ (1 - \phi_e)^{\frac{1}{\lambda_e}} C_t(h)^{\frac{\lambda_e - 1}{\lambda_e}} + \phi_e^{\frac{1}{\lambda_e}} E_t^s(h)^{\frac{\lambda_e - 1}{\lambda_e}} \right]^{\frac{\lambda_e}{\lambda_e - 1}}, \qquad (2)$$

$$E_t^s(h) = f(K_{h,t-1}^e)E^r(h)_t = \psi(K_{h,t-1}^e)^2 E^r(h)_t,$$
(3)

$$E^{r}(h)_{t} = \frac{1}{\psi} (K^{e}_{h,t-1})^{-2} E^{s}(h)_{t}, \qquad (4)$$

$$K_t = (1 - \delta_e) K_{t-1} + I_t^e.$$
 (5)





Households: employed, unemployed, firm owners (out of the labour-fource) Budget constraint:

- revenue side: for employed household nominal wage  $(1 \tau)W_t$ , for unemployed nominal benefits  $P_t W_{\mu,t}$ , for a firm owner - dividends and return on capital  $(1 - \tau)Rev$ ; return on bonds  $B_{t-1}$ ;
- expenditure side: consumption of goods and raw energy, C<sub>t</sub> and E<sup>r</sup><sub>t</sub>; nominal bond holdings B<sub>t</sub>, investment into capital I<sub>t</sub> and into abatement capital I<sup>e</sup><sub>t</sub>, P<sup>I</sup><sub>t</sub> = P<sub>t</sub> is price of a domestically produced good. The agents pay portfolio and investment adjustment costs Ψ<sub>b</sub> and Ψ<sub>k</sub>.
   Denoting after tax household income W̃:

 $P_{t}C_{t} + P_{t}^{e}E_{t}^{r} + B_{t} + \Psi_{b}(B_{t},\bar{B}) + P_{t}I_{t} + \Psi_{k}(I_{t},I_{t-1}) + P_{t}I_{t}^{e} + \Psi_{k}(I_{t}^{e},I_{t-1}^{e})$   $\leq \tilde{W}_{t} + R_{t-1}B_{t-1},$ (6)





Monopolistic competition, Rotemberg pricing tradition, production function:

$$Y_{t} = min\left[\frac{1}{1-\rho_{o}}A_{t}N_{t}^{1-\gamma_{k}}K_{t-1}^{\gamma_{k}}, \frac{1}{\rho_{o}}E_{t}^{rp}\right]$$
(7)

Competitive final good producer, first-order conditions:

$$Y_t(i) = \left(\frac{P_t(i)}{P_t}\right)^{-\gamma} Y_t,\tag{8}$$

Firms pay post  $\nu_t \ge 0$  vacancies and pay  $\kappa > 0$  for each vacancy. Labour market matching function is Cobb-Douglas:

$$m_t = e_t^{\alpha} \nu_t^{1-\alpha}, \tag{9}$$

Challe et al. (2017), Hall (2005): rigidity in nominal wages. In real terms, the process for real wages is modelled as in Challe et al. (2017):

$$W_t = \left(\frac{W_{t-1}}{\Pi_t}\right)^{\gamma_w} \left(\bar{W}\left[\frac{\eta_t}{\bar{\eta}}\right]^{\chi}\right)^{1-\gamma_w},\tag{10}$$







Nominal assets are average among employed workers:

$$\tilde{b}_{e,t} = \frac{1}{e_t} \left[ \left( 1 - \omega (1 - \eta_t) \right) e_{t-1} b_{e,t-1} + \eta_t u_{t-1} \cdot 0 \right].$$
(11)

The abatement capital is the same within the workers' employment status :

$$\tilde{k}^e_{u,t} = \bar{k}^e_u, \tag{12}$$

$$\tilde{k}^{e}_{e,t} = k^{e}_{e,t-1}.$$
(13)





| Agent                        | Income          | Nominal Assets | Abatement                 |
|------------------------------|-----------------|----------------|---------------------------|
|                              |                 |                | Other Assets              |
| employed, unconst.           | wages           | savings        | K <sup>e</sup>            |
| poor HtM: 1st per unemp.     | 3/4 benefits    | savings, t-1   | low $K^e$                 |
| poor HtM: long-period unemp. | benefits        | no             | low $K^e$                 |
| rich HtM: capitalists        | firms dividends | debt           | K <sup>e</sup> , K, firms |





• employed workers:

 $P_t C_t + P_t^e E_t^r + B_t + \Psi_b(B_t, \bar{B}) + P_t^I I_t^e + \Psi_k(I_t^e, I_{t-1}^e) \le (1 - \tau) W_t + R_t B_{t-1},$  $I_t^e = k_{e,t}^e - (1 - \delta_e) \tilde{k}_{e,t}^e;$ 

• poor HtM: first period unemployed

$$P_t C_t + P_t^e E_t^r + P_t^I I_t^e \le P_t 0.75 W_{\mu,t} + R_t B_{t-1},$$

or unemployed for longer than 1 period

$$P_t C_t + P_t^e E_t^r + P_t^I I_t^e \le P_t W_{\mu,t},$$

both types:  $I_t^e = \delta_e \tilde{k}_{u,t}^e$ ; • rich HtM: firm owners

$$P_{t}C_{t} + P_{t}^{e}E_{t}^{r} + B_{t}^{c} + P_{t}^{I}I_{t}^{e} + P_{t}^{I}I_{t} + \Psi_{k}(I_{t}, I_{t-1}) + \Psi_{k}(I_{t}^{e}, I_{t-1}^{e}) \leq (1 - \tau)Rev_{t}$$

$$I_{t}^{e} = k_{c,t}^{e} - (1 - \delta_{e})k_{c,t-1}^{e}, \quad I_{t} = k_{t} - (1 - \delta_{e})k_{t-1},$$

$$B_{t}^{c} = \frac{\sum_{\text{empl.w.}}\bar{B}}{\text{number of firm owners}'}, \quad \beta_{t}^{c} = \beta \left(k_{t-1}/\bar{k}\right)^{-\psi_{k}\beta}.$$





| Name                                    | Symbol            | Value |
|-----------------------------------------|-------------------|-------|
| Energy consumption:                     |                   |       |
| Share of energy in CES aggregator       | $\phi_e$          | 0.1   |
| Elasticity of substitution              | $\lambda_e$       | 0.3   |
| Energy capital depreciation             | $\delta_e$        | 0.01  |
| Energy share in output                  | $ ho_o$           | 0.05  |
| Labour market:                          |                   |       |
| Steady state job finding rate           | $\overline{\eta}$ | 0.15  |
| Share of firm owners                    | ξ                 | 0.12  |
| Adjustment costs:                       |                   |       |
| Portfolio adjustment costs'             | $\psi_b$          | 0.03  |
| Capitalists' discount factor adjustment | $\psi_k$          | 0.1   |
| Abatement capital adjustment costs      | $\psi$            | 0.005 |
| Abatement and preferences:              |                   |       |
| Abatement parameter                     | $1/\psi_{ab}$     | 1/29  |
| Discount rate                           | β                 | 0.95  |





| Name                                      | Symbol                                    | Value |       |
|-------------------------------------------|-------------------------------------------|-------|-------|
|                                           |                                           | Model | Data  |
| Workers' savings to wealth ratio          | $\overline{B}_t$ / Net wealth             | 0.077 | 0.068 |
| Share of workers energy expenditures      | $\bar{E}_n^r/(\bar{E}_n^r+\bar{C}_n)$     | 0.10  | 0.11  |
| Share of poor HtM energy expenditures     | $\bar{E}_e^r/(\bar{E}_e^r+\bar{C}_e)$     | 0.12  | 0.12  |
| Share of capitalists' energy expenditures | $\bar{E}_c^r / (\bar{E}_c^r + \bar{C}_c)$ | 0.06  | 0.09  |
| Total share of energy expenditures        | $\bar{E}^r/(\bar{E}^r+\bar{C})$           | 0.102 | 0.102 |
| Interest rate annualized                  | $\bar{R}$                                 | 1.034 | 1.03  |

