For whom the bill tolls: redistributive consequences of a monetary-fiscal stimulus

Michał Brzoza-Brzezina (SGH Warsaw School of Economics) Julia Jabłońska Marcin Kolasa Krzysztof Makarski

> CNB & CERGE-EI Conference 16-17 May 2024, Prague

Outline

3 Results

4 Conclusions

5 Additional slides

Intro

Large fiscal expansion during the pandemic

• Perceived as (partly) unfunded (e.g. Barro & Bianchi 2023)

Intro

& accomodative monetary policy

Eurosystem holdings of gov. securities (EUR tn)

EONIA forward rate (%)

Source: ECB

Source: ECB

What do we do?

- The stimuls was necessary but...
- ... must have had large (direct & indirect) redistributive effects...
 - Income side (transfers + macro effects)
 - Financing side (no tax increases; macro effects)
- … which we study

Major questions:

- 1. who gained and who paid the bill?
- 2. relative strenght of direct vs indirect effects
- 3. role of fiscal / monetary policy

Intro

Literature

- Monetary policy/ inflation have significant redistributive effects (in particular indirect effects):
 - inflation benefits the young: Doepke and Schneider (2006), Albanesi (2007), Adam and Zhu (2016), Pallotti et al. (2023)
 - expansionary monetary redistributes from old to young, from rich to poor: Coibion et al. (2017), Dossche et al. (2021), Lenza and Slačálek (2021) Bielecki et al. (2022)
- Fiscal policy and redistribution during the pandemic:
 - macroeconomic effects matter for redistribution: Bhattarai et al. (2023) in a TANK model
- The macroeconomic effects of fiscal policy depend on monetary policy reaction & funding:
 - stronger effects @ZLB: Christiano et al. (2011), Woodford (2011)
 - inflation and output effects stronger for unfunded fiscal shocks/ passive monetary policy reaction: theory: Leeper (1991); Bianchi et al. (2023); English et al. (2017), empirics: Cloyne et al. (2020); Hack et al. (2023),
 - stimulus was (partly) unfunded: Barro & Bianchi (2023)

Model

Outline

2 Model

3 Results

4 Conclusions

5 Additional slides

Model structure: overview

- Life-cycle model...
 - 80 cohorts of overlapping generations of households (age 20-99)
 - Detailed, age-specific asset structure: deposits, loans, bonds, housing, real fin. assets
- ...with nominal & real frictions...
 - sticky prices, sticky wages, habits, investment adjustment costs
- ...government and central bank
- Calibrated for the euro area (HFCS data)

Model

Households

• Maximize expected lifetime utility

$$\begin{aligned} U_{j,t} &= \mathbb{E}_t \sum_{i=0}^{J-j} \beta^i \frac{N_{j+i}}{N_j} \left(\log(c_{j+s,t+s} - \varrho \bar{c}_{j+s,t+s-1}) \right. \\ &+ \upsilon_j \log \chi_{j,t} + \psi_j \log m_{j,t} + \frac{\bar{g}}{\bar{c}_j} \log(g_{t+s} - \varrho \bar{g}_{t+s-1}) - \phi_j \frac{h_{j,t}(\iota)^{1+\frac{1}{\varphi}}}{1+\frac{1}{\varphi}} \right) \end{aligned}$$

subject to

$$c_{j,t} + p_{\chi,t}[\chi_{j,t} - (1 - \delta_{\chi})\chi_{j-1,t-1}] + m_{j,t} + a_{j,t} + \frac{R_t}{\pi_t}s_{j-1,t-1} = (1 - \tau)w_t z_j h_{j,t} + s_{j,t} + tr_{j,t} + \frac{R_t^m}{\pi_t}m_{j-1,t-1} + \frac{R_{j,t}^a}{\pi_t}a_{j-1,t-1} + beq_{j,t}$$

• Calvo-type wage stickiness

Frictionless financial intermediation

Investment funds:

- Manage bonds and real financial assets owned by households
- Maximize expected return on total portfolio
- Distribute ex-post returns to HHs according to age-specific and exogenous portfolio composition $R_{j,t}^a = \eta_{j,t}R_{t-1} + (1 \eta_{j,t})R_t^f$
- Banks:
 - Accept deposits
 - Grant loans $s_{j,t} = \ell_{j,t} + (1 \frac{1}{m})s_{j-1,t-1}/\pi_t$, collateralized on housing $\ell_{j,t} = LTV_j\chi_{j,t}p_{\chi,t}$
 - Balance sheet: $s_t + rr_t + b_t^b = m_t$

Mode

Producers

• Final goods aggregated from differentiated intermediate products

$$c_t + i_t + g_t + \delta_{\chi} p_{\chi,t} \chi = \left[\int y_t(i)^{\frac{1}{\mu}} \mathrm{d}i \right]^{\mu}$$

Intermediate goods firms produce differentiated products

$$y_t(i) = k_t(i)^{\alpha} h_t(i)^{1-\alpha}$$

- Maximize profits $f_t(i) = y_t(i) r_t^k k_t(i) w_t h_t(i)$
- Face Calvo-type price stickiness
- Capital producers are subject to investment adjustment cost

$$(1+n)k_{t+1} = (1-\delta)k_t + \left[1-S\left(\frac{i_t}{i_{t-1}}\right)\right]i_t$$

Government

- Various transfers and public consumption...
- ... financed with taxes and debt $\frac{R_t}{\pi_t}b_t + g_t + tr_t^H + tr_t^W + tr_t^R + tr_t^F = (1+n)b_{t+1} + \tau w_t h_t$

Central bank

Baseline scenario: accomodation of fiscal expansion via creation of reserves

$$rr_t = b_t^c$$

- In this case the the stimulus partly unfunded
- Alternative scenario: Taylor rule with ELB

$$\frac{R_t}{R} = \max\left[1, \left(\frac{R_{t-1}}{R}\right)^{\gamma_R} \left[\left(\frac{\pi_t}{\pi}\right)^{\gamma_\pi} \left(\frac{y_t}{y}\right)^{\gamma_y}\right]^{1-\gamma_R}\right]$$

Model

Calibration for the euro area

Outline

Fiscal stimulus

- Source: Eurostat data on GG expenditure by function
- Fiscal expenditure allocated to five categories

Expenditure (% GDP in 2019)	2020	2021
Transfers to employees	2.08	2.07
Public consumption	1.03	1.46
Transfers to firms	0.45	0.89
Transfers to retirees	0.34	0.40
Other transfers to households	0.13	0.53
Total	4.02	5.35

Results

Government spending by cohort (direct effects)

Heterogeneity of asset holdings

Macroeconomic effects of stimulus

Results

Welfare effects of stimulus by economic channel

Validation: comparison of price levels

Note: All data in deviation from trend or steady state. Data for 2024 comes from the ECB Staff projections from March 2024.

Results

Alternative assumptions about monetary/fiscal policy

Results

Welfare effects: active monetary policy + ELB

23/25

Outline

B Results

Conclusions

Who gained? The younger: workers and indebted households

Who paid the bill? The older: owners of nominal assets

General equilibrium channels inverted the effect for many cohorts

The redistribution is strong, when:

- public deficit is unfunded or
- monetary policy is constrained (ELB)

Literature

- Adam, Klaus, and Junyi Zhu (2016) 'Price-Level Changes and the Redistribution of Nominal Wealth Across the Euro Area.' Journal of the European Economic Association 14, 871–906
- Albanesi, Stefania (2007) 'Inflation and inequality.' Journal of Monetary Economics 54(4), 1088-1114
- Bhattarai, Saroj, Jae Won Lee, and Choongryul Yang (2023) 'Redistribution and the monetary fiscal policy mix.' *Quantitative Economics* 14(3), 817–853
- Bianchi, Francesco, Renato Faccini, and Leonardo Melosi (2023) 'A Fiscal Theory of Persistent Inflation.' The Quarterly Journal of Economics 138(4), 2127–2179
- Bielecki, Marcin, Michal Brzoza-Brzezina, and Marcin Kolasa (2022) 'Intergenerational Redistributive Effects of Monetary Policy .' Journal of the European Economic Association 20(2), 549–580
- Christiano, Lawrence, Martin Eichenbaum, and Sergio Rebelo (2011) 'When is the government spending multiplier large?' Journal of Political Economy 119(1), 78–121
- Cloyne, James, Oscar Jorda, and Alan M. Taylor (2020) 'Decomposing the Fiscal Multiplier.' Working Paper Series 2020-12, Federal Reserve Bank of San Francisco, March
- Coibion, Olivier, Yuriy Gorodnichenko, Lorenz Kueng, and John Silvial (2017) 'Innocent bystanders? monetary policy and inequality.' Journal of Monetary Economics 88, 70–89
- Doepke, Matthias, and Martin Schneider (2006) 'Inflation and the redistribution of nominal wealth.' Journal of Political Economy 114, 1069–1097
- Dossche, Maarten, Jiří Slačálek, and Guido Wolswijk (2021) 'Monetary policy and inequality.' ECB Economic Bulletin, Issue 2/2021
- English, William B., Christopher J. Erceg, and J. David Lopez-Salido (2017) 'Money-Financed Fiscal Programs : A Cautionary Tale.' Finance and Economics Discussion Series 2017-060, Board of Governors of the Federal Reserve System (U.S.), June
- Hack, Lukas, Klodiana Istrefi, and Matthias Meier (2023) 'Identification of systematic monetary policy.' Working Paper Series 2851, European Central Bank, October
- Leeper, Eric M. (1991) 'Equilibria under 'active' and 'passive' monetary and fiscal policies.' Journal of Monetary Economics 27(1), 129–147
- Lenza, Michele, and Jiří Slačálek (2021) 'How does monetary policy affect income and wealth inequality? Evidence from quantitative easing in the euro area .' ECB Working Paper Series, No 2190/2018
- Woodford, Michael (2011) 'Simple analytics of the government expenditure multiplier.' American Economic Journal: Macroeconomics 3(1), 1–35

Outline

3 Results

Calibration

Parameter	Value	Description
β	0.9875	Discount factor
φ	0.5	Frisch elasticity of labor supply
ρ	0.32	Habit persistence
δ_{χ}	0.04	Housing depreciation rate
δ	0.12	Capital depreciation rate
α	0.25	Capital share in output
<i>S</i> ₁	4	Investment adjustment cost curvature
μ	1.2	Steady state product markup
θ	0.19	Calvo probability (prices)
Φ	0.04	Intermediate goods producers fixed cost
μ_w	1.2	Steady state wage markup
θ_{w}	0.41	Calvo probability (wages)
gy	0.2	Share of government purchases in GDP
b ^g /y	0.54	Steady state government bonds to GDP ratio
π	1.02	Inflation target

Mapping with HFCS data

	= Employee income	
Labor income	+ Self-employment income	DI1200
Hours worked	= Hours working a week - main job	PE0600
	= Value of household's main residence	
Housing stock	+ Value of other real estate property not for business activities	DA1122
Real financial assets	= Business wealth	DA1200
	+ Value of non self-employment private business	
	+ Shares, publicly traded	
	+ 50% Mutual funds	
	+ 50% Voluntary pension/whole life insurance	DA2109
Nominal financial assets	+= Bonds	DA2103
	+ 50% Mutual funds	DA2102
	+ 50% Voluntary pension/whole life insurance	DA2109
Deposits	= Deposits	DA2101
	= Outstanding balance of mortgage debt	DL1100
Loans	+ Outstanding balance of other, non-mortgage debt	DL1200

Aggregate assets calibration

- Aggregate data from financial and non-financial balance sheets (Eurostat, % of GDP w/o government expenditures):
 - Housing stock 130% GDP
 - Nonresidential fixed assets 197% GDP
 - Loans: 87% GDP
 - Money: 98% GDP
 - Reserves: 12% GDP
 - Gov. bonds: 53% GDP

Example: effect of transfer to all HH (1% of GDP)

Example: effect of gov spending shock (1% of GDP)

Welfare effects of stimulus by instrument

Counterfactual w/o expansion

Welfare decomposition

• Totally differenciate the indirect utility function wrt all arguments (house prices $p_{\chi,t}$, ret. on nom. assets R_{t-1}/π_t , ret. on equity R_t^f/π_t etc.)

$$\mathrm{d}\mathcal{W}_{j,0}(\iota) = \mathbb{E}_0 \sum_{s=0}^{J-j} \frac{\partial \mathcal{W}_{j,0}(\iota)}{\partial p_{\chi,s}} \mathrm{d}p_{\chi,s} + \dots$$

where e.g.

$$\begin{split} \sum_{s=0}^{J-j} \frac{\partial \mathcal{W}_{j,0}(\iota)}{\partial p_{\chi,s}} \mathrm{d}p_{\chi,s} &= -\sum_{s=0}^{J-j} \lambda_{j+s} [\chi_{j+s} - (1 - \delta_{\chi})\chi_{j+s-1}] \mathrm{d}p_{\chi,s} \\ &= -\sum_{s=0}^{J-j} \beta^s \omega_j^s u_{j+s}^c [\chi_{j+s} - (1 - \delta_{\chi})\chi_{j+s-1}] \mathrm{d}p_{\chi,s} \\ &= u_j^c \sum_{s=0}^{J-j} (1 + r)^{-s} [(1 - \delta_{\chi})\chi_{j+s-1} - \chi_{j+s}] \mathrm{d}p_{\chi,s} \end{split}$$