Marco Bellifemine LSE Adrien Couturier LSE Rustam Jamilov Oxford

Heterogeneous Agents in Macroeconomic Models, Prague

May 17, 2024

MONETARY POLICY HAS HETEROGENEOUS EFFECTS ACROSS US REGIONS

MONETARY POLICY HAS HETEROGENEOUS EFFECTS ACROSS US REGIONS

► This paper:

I Why is there regional heterogeneity in the employment response to MP?

MONETARY POLICY HAS HETEROGENEOUS EFFECTS ACROSS US REGIONS

► This paper:

- I Why is there regional heterogeneity in the employment response to MP?
- II Does it matter for the aggregate transmission of monetary policy?

I Theory: HANK model of a currency union with

I Theory: HANK model of a currency union with

◊ Heterogeneous MPC across counties

- I Theory: HANK model of a currency union with
 - Heterogeneous MPC across counties
 - \diamond Het. share of non-tradable empl. ρ across counties

- I Theory: HANK model of a currency union with
 - Heterogeneous MPC across counties
 - \diamond Het. share of non-tradable empl. ρ across counties

II National aggregation: National Keynesian Cross

- I Theory: HANK model of a currency union with
 - Heterogeneous MPC across counties
 - \diamond Het. share of non-tradable empl. ρ across counties

II National aggregation: National Keynesian Cross

III Empirics: novel measure of county-level MPCs + test model with county-level micro-data

- I Theory: HANK model of a currency union with
 - Heterogeneous MPC across counties
 - \diamond Het. share of non-tradable empl. ρ across counties

II National aggregation: National Keynesian Cross

III Empirics: novel measure of county-level MPCs + test model with county-level micro-data

IV Quantitatively replicate empirical joint distribution + counterfactuals

I Theory: HANK model of a currency union with

- Heterogeneous MPC across counties
- \diamond Het. share of non-tradable empl. ρ across counties

II National aggregation: National Keynesian Cross

Regional Keynesian Multiplier $\frac{1}{1-\rho \times MPC}$

III Empirics: novel measure of county-level MPCs + test model with county-level micro-data

IV Quantitatively replicate empirical joint distribution + counterfactuals

- I Theory: HANK model of a currency union with
 - Heterogeneous MPC across counties
 - \diamond Het. share of non-tradable empl. ρ across counties

Regional Keynesian Multiplier $\frac{1}{1-\rho \times MPC}$

- II National aggregation: National Keynesian Cross
 - Joint regional distribution of MPCs & non tradability matters for national response
- III Empirics: novel measure of county-level MPCs + test model with county-level micro-data

IV Quantitatively replicate empirical joint distribution + counterfactuals

- I Theory: HANK model of a currency union with
 - Heterogeneous MPC across counties
 - Het. share of non-tradable empl. ρ across counties

Regional Keynesian Multiplier $\frac{1}{1-\rho \times MPC}$

- II National aggregation: National Keynesian Cross
 - Joint regional distribution of MPCs & non tradability matters for national response

III Empirics: novel measure of county-level MPCs + test model with county-level micro-data

- Share of non-tradable empl. & MPC main drivers of regional heterogeneity, amplify response
- IV Quantitatively replicate empirical joint distribution + counterfactuals

- I Theory: HANK model of a currency union with
 - Heterogeneous MPC across counties
 - \diamond Het. share of non-tradable empl. ρ across counties

Regional Keynesian Multiplier $\frac{1}{1-\rho \times MPC}$

- II National aggregation: National Keynesian Cross
 - Joint regional distribution of MPCs & non tradability matters for national response

III Empirics: novel measure of county-level MPCs + test model with county-level micro-data

Share of non-tradable empl. & MPC main drivers of regional heterogeneity, amplify response

IV Quantitatively replicate empirical joint distribution + counterfactuals

- Match empirical IRFs
- $\diamond~$ State dependency \rightarrow regional heterogeneity neutral in US, 30% amplification in ITA

BELLIFEMINE, COUTURIER & JAMILOV

TODAY

- I Theory: HANK model of a currency union with
 - Heterogeneous MPC across counties
 - \diamond Het. share of non-tradable empl. ρ across counties

Regional Keynesian Multiplier $\frac{1}{1-\rho \times MPC}$

- II National aggregation: National Keynesian Cross
 - Joint regional distribution of MPCs & non tradability matters for national response

III Empirics: novel measure of county-level MPCs + test model with county-level micro-data

Share of non-tradable empl. & MPC main drivers of regional heterogeneity, amplify response

IV Quantitatively replicate empirical joint distribution + counterfactuals

- ◊ Match empirical IRFs
- $\diamond~$ State dependency \rightarrow regional heterogeneity neutral in US, 30% amplification in ITA

BELLIFEMINE, COUTURIER & JAMILOV

LITERATURE

I Heterogeneous Agents New Keynesian models (Campbell and Mankiw, 1989; Bilbilie, 2008; Werning, 2015; Challe et al., 2017;

Debortoli and Gali, 2018; Kaplan et al., 2018; Auclert, 2019; Hagedorn et al., 2019; de Ferra et al., 2020; Auclert et al., 2020, 2021a,b, 2023; Ravn and Sterk, 2020; Dupor et al., 2023; Acharya et al., 2023; Patterson, 2023)

- Heterogeneity & MPCs shape the transmission of MP
- Our contribution: regional setting, heterogeneity both within & across regions matters
- II Optimal Currency Areas (Mundell, 1961; McKinnon, 1963; Kenen, 1969; Alesina et al., 2002; Kenen and Meade, 2008; Farhi and Werning, 2016, 2017)
 - Openness to trade determines potency of monetary and fiscal stabilization tools
 - Our contribution: heterogeneity between union members

Integrate I & $II \rightarrow$ framework for MP transmission across regions + empirically testable insights

- MP across space (Carlino and Defina, 1998; De Ridder and Pfajfar, 2017; Hauptmeier et al., 2023; Corsetti et al., 2021; Herreño and Pedemonte, 2022; Almgren et al., 2022; Costain et al., 2022; Costain et al., 2022)
- Sequence space methods (Mankiw and Reis, 2006; Boppart et al., 2018; Auclert et al., 2023)
- Open-economy macroeconomics (Obstfeld and Rogoff, 1995; Galí and Monacelli, 2005, 2008; Rey, 2013; Miranda-Agrippino and Rey, 2020)
- Cross-sectional identification (Nakamura and Steinsson, 2014, 2018; Beraja et al., 2018; Chodorow-Reich et al., 2021; Hazell et al., 2022; Wolf, 2021a,b)
 BELLIFEMINE, COUTURIER & JAMILOV
 THE REGIONAL KEYNESIAN CROSS
 3,

▶ Multi-region currency union with atomistic counties $j \in [0, 1]$

- ▶ Multi-region currency union with atomistic counties $j \in [0, 1]$
- Within-county household heterogeneity:

$$\max_{\{c_{jit}, b_{jit+1}\}} \mathbb{E}_0 \sum_{t \ge 0} \beta_j^t \{ u(c_{jit}) - v(\ell_{jit}) \} \quad \text{s.t.} \quad c_{jit} + b_{jit+1} = \frac{W_{jt}}{P_{jt}} e_{jit} \ell_{jit} + (1+r_t) b_{jit}, \quad b_{jit+1} \ge \underline{b}_j$$

- ▶ Multi-region currency union with atomistic counties $j \in [0, 1]$
- Within-county household heterogeneity:

$$\max_{\{c_{jit}, b_{jit+1}\}} \mathbb{E}_0 \sum_{t \ge 0} \beta_j^t \{ u(c_{jit}) - v(\ell_{jit}) \} \quad \text{s.t.} \quad c_{jit} + b_{jit+1} = \frac{W_{jt}}{P_{jt}} e_{jit} \ell_{jit} + (1 + r_t) b_{jit}, \quad b_{jit+1} \ge \underline{b}_j$$

- Aggregate consumption basket composed of two goods:
 - I Tradables: $c_{jit}^T = \int_0^1 c_{jit}^T (j') dj' \Rightarrow$ law of one price
 - II Non-tradables: consumed locally

- ▶ Multi-region currency union with atomistic counties $j \in [0, 1]$
- Within-county household heterogeneity:

$$\max_{\{c_{jit}, b_{jit+1}\}} \mathbb{E}_0 \sum_{t \ge 0} \beta_j^t \{ u(c_{jit}) - v(\ell_{jit}) \} \quad \text{s.t.} \quad c_{jit} + b_{jit+1} = \frac{W_{jt}}{P_{jt}} e_{jit} \ell_{jit} + (1+r_t) b_{jit}, \quad b_{jit+1} \ge \underline{b}_j$$

Aggregate consumption basket composed of two goods:

I Tradables:
$$c_{jit}^{T} = \int_{0}^{1} c_{jit}^{T}(j')dj' \Rightarrow$$
 law of one price $c_{jit} = \left[\omega_{j}^{\frac{1}{\nu}} \left(c_{jit}^{NT} \right)^{\frac{\nu-1}{\nu}} + (1-\omega_{j})^{\frac{1}{\nu}} \left(c_{jit}^{T} \right)^{\frac{\nu-1}{\nu}} \right]^{\frac{\nu}{\nu-1}}$
II Non-tradables: consumed locally

- ▶ Multi-region currency union with atomistic counties $j \in [0, 1]$
- Within-county household heterogeneity:

$$\max_{\{c_{jit}, b_{jit+1}\}} \mathbb{E}_0 \sum_{t \ge 0} \beta_j^t \{ u(c_{jit}) - v(\ell_{jit}) \} \quad \text{s.t.} \quad c_{jit} + b_{jit+1} = \frac{W_{jt}}{P_{jt}} e_{jit} \ell_{jit} + (1+r_t) b_{jit}, \quad b_{jit+1} \ge \underline{b}_j$$

- Aggregate consumption basket composed of two goods:
 - I Tradables: $c_{jit}^{T} = \int_{0}^{1} c_{jit}^{T}(j') dj' \Rightarrow \text{law of one price}$ II Non-tradables: consumed locally $c_{jit} = \left[\omega_{j}^{\frac{1}{\nu}} \left(c_{jit}^{NT}\right)^{\frac{\nu-1}{\nu}} + (1-\omega_{j})^{\frac{1}{\nu}} \left(c_{jit}^{T}\right)^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}$

► Two sectors:
$$\ell_{jit} = \left[\alpha_j^{-\frac{1}{\eta}} (\ell_{jit}^{NT})^{\frac{\eta+1}{\eta}} + (1-\alpha_j)^{-\frac{1}{\eta}} (\ell_{jit}^T)^{\frac{\eta+1}{\eta}}\right]^{\frac{\eta}{\eta+1}}, \quad y_{jt}^s = \ell_{jt}^s, \quad \text{unions } + \ell_{jit}^s$$

BELLIFEMINE, COUTURIER & JAMILOV

▶ Non-tradable labor income share:
$$\rho_j \equiv \frac{\ell_j^{NT} W_j^{NT}}{\ell_j W_j} \in [0, 1]$$

▶ Non-tradable labor income share: $\rho_j \equiv \frac{\ell_j^{NT} W_j^{NT}}{\ell_j W_j} \in [0, 1]$

♦ Consumption $\uparrow 1\% \Rightarrow$ regional real labor income $\uparrow \rho_j\%$

- ▶ Non-tradable labor income share: $\rho_j \equiv \frac{\ell_j^{NT} W_j^{NT}}{\ell_j W_j} \in [0, 1]$
 - ♦ Consumption $\uparrow 1\% \Rightarrow$ regional real labor income $\uparrow \rho_j\%$
 - Governs exposure to regional vs national fluctuations

- ▶ Non-tradable labor income share: $\rho_j \equiv \frac{\ell_j^{NT} W_j^{NT}}{\ell_j W_j} \in [0, 1]$
 - ♦ Consumption $\uparrow 1\% \Rightarrow$ regional real labor income $\uparrow \rho_j\%$
 - Governs exposure to regional vs national fluctuations
- ► Intertemporal MPCs (Auclert et al., 2023)
 - Regional aggregate consumption function captures all the heterogeneity:

$$\mathcal{C}_{jt}\left(\left\{Z_{js}
ight\}_{s\geq0},\left\{r_{s}
ight\}_{s\geq0}
ight),\qquad Z_{js}\equivrac{W_{js}}{P_{js}}L_{js}$$

- ▶ Non-tradable labor income share: $\rho_j \equiv \frac{\ell_j^{NT} W_j^{NT}}{\ell_j W_i} \in [0, 1]$
 - ♦ Consumption $\uparrow 1\% \Rightarrow$ regional real labor income $\uparrow \rho_j\%$
 - Governs exposure to regional vs national fluctuations
- Intertemporal MPCs (Auclert et al., 2023)
 - Regional aggregate consumption function captures all the heterogeneity:

$$\mathcal{C}_{jt}\left(\left\{Z_{js}
ight\}_{s\geq0},\left\{r_{s}
ight\}_{s\geq0}
ight),\qquad Z_{js}\equivrac{W_{js}}{P_{js}}L_{js}$$

o Define Jacobian matrices + stack in vector notation:

$$(\mathbf{M}_j)_{ts} = \frac{\partial \log \mathcal{C}_{jt}(\cdot)}{\partial \log Z_{js}}, \qquad (\mathbf{M}_j^r)_{ts} = \frac{\partial \log \mathcal{C}_{jt}(\cdot)}{\partial \log(1+r_s)}, \qquad d\mathbf{L}_j \equiv (d \log L_{j1}, d \log L_{j2}, \cdots)'$$

PROPOSITION

The 1st-order response dL_i to a monetary shock dr & tradable demand shock dC^T solves:

$$dL_{j} = \underbrace{\rho_{j}\left(\boldsymbol{M}_{j}^{r}d\boldsymbol{r} + \boldsymbol{M}_{j}d\boldsymbol{L}_{j}\right)}_{\text{Regional exposure}} + \underbrace{(1 - \rho_{j})d\boldsymbol{C}^{T}}_{\text{National exposure}}$$

PROPOSITION

The 1st-order response dL_i to a monetary shock dr & tradable demand shock dC^T solves:

$$dL_{j} = \underbrace{\rho_{j}\left(\boldsymbol{M}_{j}^{r}d\boldsymbol{r} + \boldsymbol{M}_{j}d\boldsymbol{L}_{j}\right)}_{\text{Regional exposure}} + \underbrace{(1 - \rho_{j})d\boldsymbol{C}^{T}}_{\text{National exposure}}$$

► Regional Keynesian multiplier non-linear in ρ and M_j : $M_i = (I - \rho_i M_i)^{-1}$

PROPOSITION

The 1st-order response dL_i to a monetary shock dr & tradable demand shock dC^T solves:

$$dL_{j} = \underbrace{\rho_{j}\left(\boldsymbol{M}_{j}^{r}d\boldsymbol{r} + \boldsymbol{M}_{j}d\boldsymbol{L}_{j}\right)}_{\boldsymbol{Regional\ exposure}} + \underbrace{(1-\rho_{j})d\boldsymbol{C}^{T}}_{\boldsymbol{National\ exposure}}$$

- ▶ Regional Keynesian multiplier non-linear in ρ and M_j : $M_j = (I \rho_j M_j)^{-1}$
- ▶ Integrate RKCs over counties $j \rightarrow$ national equilibrium: endog. tradable demand

THE NATIONAL KEYNESIAN CROSS

PROPOSITION

The 1st-order response dL_i to a monetary shock dr & tradable demand shock dC^T solves:

$$dL_{j} = \underbrace{\rho_{j}\left(\boldsymbol{M}_{j}^{r}d\boldsymbol{r} + \boldsymbol{M}_{j}d\boldsymbol{L}_{j}\right)}_{\textit{Regional exposure}} + \underbrace{(1 - \rho_{j})d\boldsymbol{C}^{T}}_{\textit{National exposure}}$$

- ► Regional Keynesian multiplier non-linear in ρ and M_j : $M_j = (I \rho_j M_j)^{-1}$
- ▶ Integrate RKCs over counties $j \rightarrow$ national equilibrium: endog. tradable demand

$$dL = \underbrace{\left(\boldsymbol{M} + \mathbb{C}\mathrm{ov}(\rho_{j}, \boldsymbol{M}_{j})\right) dL}_{\text{national multiplier}} + \underbrace{\left(\boldsymbol{M}^{r} + \mathbb{C}\mathrm{ov}(\rho_{j}, \boldsymbol{M}_{j}^{r})\right) dr}_{\text{national interest rate channel}} + \mathbb{C}\mathrm{ov}((1 + \rho_{j} - \rho)\boldsymbol{M}_{j}, d\boldsymbol{L}_{j})$$

Joint distribution of MPCs and non-tradability across regions matters

Model Meets Data

> 2-step procedure to compute MPCs at the county-level, extend Patterson (2023):

- 2-step procedure to compute MPCs at the county-level, extend Patterson (2023):
 - \diamond Step I: regress MPCs on bins for income, education, age, wealth & race \rightarrow store coefficients

- 2-step procedure to compute MPCs at the county-level, extend Patterson (2023):
 - \diamond Step I: regress MPCs on bins for income, education, age, wealth & race \rightarrow store coefficients

- 2-step procedure to compute MPCs at the county-level, extend Patterson (2023):
 - \diamond Step I: regress MPCs on bins for income, education, age, wealth & race \rightarrow store coefficients
 - Step II(a): compute county-level share of households in each bin
 - $\diamond~Step~II(b):$ get county-level MPC as weighted average of MPC by household group

- > 2-step procedure to compute MPCs at the county-level, extend Patterson (2023):
 - $\diamond~$ Step I: regress MPCs on bins for income, education, age, wealth & race \rightarrow store coefficients
 - Step II(a): compute county-level share of households in each bin
 - Step II(b): get county-level MPC as weighted average of MPC by household group
- Account for full distribution of agents along economic & socio-demographic characteristics

THE GEOGRAPHY OF NON-TRADABLE EMPLOYMENT

- ▶ Non-tradable sector classification based on Mian & Sufi (2014)
- > Annual employment data from US Census County Business Pattern
- ▶ Non-tradable employment & MPCs negatively correlated across counties \approx -0.25

REGIONAL HETEROGENEITY IN THE RESPONSE TO MP

► Large regional heterogeneity in the response to MP

REGIONAL HETEROGENEITY IN THE RESPONSE TO MP

- Large regional heterogeneity in the response to MP
- ... but does it matter for the aggregate?

► Compare national response under regional heterogeneity with repr. region:

- ► Compare national response under regional heterogeneity with repr. region:
 - $\diamond~$ US: regional heterogeneity \approx neutral

- Compare national response under regional heterogeneity with repr. region:
 - \diamond US: regional heterogeneity \approx neutral
 - $\diamond~$ ITA: regional heterogeneity amplifies response by 30% \leftarrow large MPC heterogeneity

- Compare national response under regional heterogeneity with repr. region:
 - ◇ US: regional heterogeneity \approx neutral
 - \diamond ITA: regional heterogeneity amplifies response by 30% \leftarrow large MPC heterogeneity
- ► State dependency → potency of MP depends on full regional distribution

BELLIFEMINE, COUTURIER & JAMILOV

CONCLUSION AND WAY FORWARD

Regional heterogeneity in response to MP explained theoretically and empirically by:

- ◊ Local MPC
- Local share of the non-tradable sector

- ▶ Multiplier non-linear in MPC & $\rho_i \rightarrow joint distribution matters for aggregate$
 - State dependency: regional heterogeneity amplifies MP in Italy, not in US

▶ Portable framework: follow-up project on \in -zone → heterogeneous fiscal policy

CONCLUSION AND WAY FORWARD

Regional heterogeneity in response to MP explained theoretically and empirically by:

- ◊ Local MPC
- Local share of the non-tradable sector

- ▶ Multiplier non-linear in MPC & $\rho_i \rightarrow joint$ distribution matters for aggregate
 - State dependency: regional heterogeneity amplifies MP in Italy, not in US

▶ Portable framework: follow-up project on \in -zone → heterogeneous fiscal policy

Thanks!

Appendix

REGRESSION SPECIFICATION HISTOGRAM

Panel local-projection (weighted by 2000 population):

$$\Delta \log(L_{jt+h}) = \alpha_{jh} + \delta_{th} + \sum_{j=1}^{J} \beta_{jh} \times D_{jh} \times \varepsilon_t + \sum_{\ell=1}^{12} \gamma_{h\ell} \Delta \log(L_{jt-\ell}) + u_{jh\ell}$$

- $\diamond D_{jh}$: Dummy for county *j*
- $\diamond \alpha_{jh}$: county fixed effect
- δ_{th} : time fixed effect \Rightarrow absorbs the shock
- $\diamond \beta_{jh}$: county-specific slope \Rightarrow unexplained heterogeneity

THE DISTRIBUTION OF COUNTY-SPECIFIC RESPONSES

MODEL PARAMETRIZATION

Parameter	Description	Value	Comment
σ	Inverse IES	1	Standard
arphi	Frisch Elasticity	1	Chetty et al. (2011)
ψ	Labor disutility	1	Normalization
ν	Elasticity of substitution between the two goods	1.5	Hazell et al. (2022)
η	Elasticity of substitution between the two sectors	0.45	Berger et al. (2022)
ω	Preference for non-tradables	0.66	Hazell et al. (2022)
$ ho_e$	Persistence of the log-productivity process	0.966	McKay et al. (2016)
σ_e	Cross-sectional std of log-productivity process	0.017	McKay et al. (2016)
<u>b</u>	Borrowing limit	-1	Target $r = 4\%$ annually

DETAILS ON REGIONAL MPCS • BACK

▶ Use self-reported MPC out of capital losses from Fuster et al. (2020)

$$MPC_{it} = \alpha + \delta_t + \underbrace{\sum_{s=1}^{5} \beta_s^R D_{sit}^R}_{\text{Race bins}} + \underbrace{\sum_{s=1}^{4} \beta_s^A D_{sit}^A}_{\text{Age bins}} + \underbrace{\sum_{s=1}^{9} \beta_s^Y D_{sit}^Y}_{\text{Income bins}} + \underbrace{\sum_{s=1}^{5} \beta_s^E D_{sit}^E}_{\text{Educ. bins}} + \underbrace{\sum_{s=1}^{4} \beta_s^W D_{sit}^W}_{\text{Wealth bins}} + u_{it}$$

▶ Use ACS to bin households in groups *g*. Group-specific MPC:

$$\widehat{MPC}_{g} = \hat{\alpha} + \sum_{s=1}^{5} \hat{\beta}_{s}^{R} D_{gs}^{R} + \sum_{s=1}^{4} \hat{\beta}_{s}^{A} D_{gs}^{A} + \sum_{s=1}^{9} \hat{\beta}_{s}^{Y} D_{gs}^{Y} + \sum_{s=1}^{5} \hat{\beta}_{s}^{E} D_{sit}^{E} + \sum_{s=1}^{4} \hat{\beta}_{s}^{W} D_{sit}^{W}$$

► County-level MPC: avg. of group-specific MPCs, weighted by share of hhs in each group:

$$MPC_{jt} = \sum_{g} s_{jtg} \widehat{MPC}_{g}$$

BELLIFEMINE, COUTURIER & JAMILOV

LP FULL SPECIFICATION • BACK

Baseline group: high MPC, high non-tradables counties

I β_h^{NT} : high MPC, low non-tradables counties less responsive than baseline

II β_h^M : low MPC, high non-tradables counties less responsive than baseline

Stack county elasticities into a vector β

- Stack county elasticities into a vector β
- Assemble a matrix of county-level features X
 - ◊ Including MPCs & non-tradable empl.

- Stack county elasticities into a vector β
- Assemble a matrix of county-level features X
 Including MPCs & non-tradable empl.
- Run horse-race with LASSO:

$$\widehat{oldsymbol{lpha}} = \operatorname*{argmin}_{oldsymbol{lpha}} ||oldsymbol{eta} - oldsymbol{X}oldsymbol{lpha}|| + \lambda \sum_i |lpha_i|$$

- Stack county elasticities into a vector β
- Assemble a matrix of county-level features X
 Including MPCs & non-tradable empl.
- Run horse-race with LASSO:

$$\widehat{oldsymbol{lpha}} = \operatorname*{argmin}_{oldsymbol{lpha}} ||oldsymbol{eta} - oldsymbol{X}oldsymbol{lpha}|| + \lambda \sum_i |lpha_i||$$

- ▶ Increase λ and plot "survival function"
- Local MPCs & non-tradable empl. important

Non-tradable empl.				
MPC				
Housing cost				
Poverty rate				
Deposit HHI	· · · · · · · · · · · · · · · · · · ·			
Voting rate				
Unemployment rate				
Sh. of black	· · · · · · · · · · · · · · · · · · ·			
Participation rate				
Sh. ĥh. in debt				
Sh. of young				
Home ownership				
Sh. hispanic				
Gender				
Firm size				
Sh. of rural				
Entry rate				
Temperature				
- : [
Penlaty term λ				

1.2 2 2 2 2

Correlation between MPCs and ρ (back)

THE REGIONAL KEYNESIAN CROSS

MATCHING THE REGIONAL STRUCTURE

Calibration computationally intensive with 3000+ counties

> Draw samples of N = 10 representative counties from empirical distribution

Pick the sample closest to moments of interest

• Calibrate β_j and α_j to match the $\{\widehat{MPC_j}, \widehat{\rho_j}\}_{j=1}^N$ in the model's steady state

 \diamond Match the empirical MPC to the first entry in M_i

MATCHING THE REGIONAL HETEROGENEITY IN THE RESPONSE DEACK

> Plot on-impact response for 3,000 calibrated counties in the (ρ_i, MPC_i) space

- I Response increasing in MPC
- II Effect of MPC on the response increasing in $\rho \leftarrow MPC-\rho$ complementarity in the multiplier
- III Response decreasing in ρ for low MPC and increasing in ρ for high MPC
 - Opposite channels: multiplier vs trade exposure

BELLIFEMINE, COUTURIER & JAMILOV

THE REGIONAL KEYNESIAN CROSS

References I

- ACHARYA, S., E. CHALLE, AND K. DOGRA (2023): "Optimal monetary policy according to HANK," *American Economic Review*, Forthcoming.
- ALESINA, A., R. J. BARRO, AND S. TENREYRO (2002): "Optimal currency areas," in *NBER Macroeconomics Annual 2002, Volume 17*, ed. by M. Gertler and K. Rogoff, Cambridge, MA: MIT Press, 301–345.
- ALMGREN, M., J.-E. GALLEGOS, J. KRAMER, AND R. LIMA (2022): "Monetary Policy and Liquidity Constraints: Evidence from the Euro Area," *American Economic Journal: Macroeconomics*, 14, 309–40.

AUCLERT, A. (2019): "Monetary Policy and the Redistribution Channel," American Economic Review, 109(6).

- AUCLERT, A., B. BARDOCZY, M. ROGNLIE, AND L. STRAUB (2021a): "Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models," *Econometrica*, 89(5).
- AUCLERT, A., M. ROGNLIE, M. SOUCHIER, AND L. STRAUB (2021b): "Exchange Rates and Monetary Policy with Heterogeneous Agents: Sizing up the Real Income Channel," *NBER Working Paper 28873.*
- AUCLERT, A., M. ROGNLIE, AND L. STRAUB (2020): "Micro Jumps, Macro Humps: Monetary Policy and Business Cycles in an Estimated HANK Model," *NBER Working Paper*, 26647.
- (2023): "The Intertemporal Keynesian Cross," *NBER Working Paper*.
- BERAJA, M., A. FUSTER, E. HURST, AND J. VAVRA (2018): "Regional Heterogeneity and the Refinancing Channel of Monetary Policy," *The Quarterly Journal of Economics*, 134, 109–183.

References II

- BILBIIE, F. (2008): "Limited asset markets participation, monetary policy and (inverted) aggregate demand logic," *Journal of Economic Theory*, 140, 162–196.
- BOPPART, T., P. KRUSELL, AND K. MITMAN (2018): "Exploiting MIT shocks in heterogeneous-agent economies: the impulse response as a numerical derivative," *Journal of Economic Dynamics and Control*, 89.
- CAMPBELL, J. AND N. G. MANKIW (1989): "Consumption, Income, and Interest Rates: Reinterpreting the Time Series Evidence," *NBER Macroeconomics Annual*, 4.
- CARLINO, G. AND R. DEFINA (1998): "The Differential Regional Effects of Monetary Policy," *The Review of Economics and Statistics*, 80(4).
- CHALLE, E., K. MATHERON, X. RAGOT, AND J. RUBIO-RAMIREZ (2017): "Precautionary saving and aggregate demand," *Quantitative Economics*, 8(2).
- CHODOROW-REICH, G., P. T. NENOV, AND A. SIMSEK (2021): "Stock Market Wealth and the Real Economy: A Local Labor Market Approach," *American Economic Review*, 111, 1613–57.
- CORSETTI, G., J. B. DUARTE, AND S. MANN (2021): "One Money, Many Markets," *Journal of the European Economic Association*, 20, 513–548.
- COSTAIN, J., G. NUÑO, AND C. THOMAS (2022): "The Term Structure of Interest Rates in a Heterogeneous Monetary Union," *Working paper*.
- DE FERRA, S., K. MITMAN, AND F. ROMEI (2020): "Household Heterogeneity and the Transmission of Foreign Shocks," *Journal of International Economics*, 124.

References III

- DE RIDDER, M. AND D. PFAJFAR (2017): "Policy Shocks and Wage Rigidities: Empirical Evidence from Regional Effects of National Shocks," *Cambridge Working Papers in Economics No. 1717.*
- DEBORTOLI, D. AND J. GALÍ (2018): "Monetary Policy with Heterogeneous Agents: Insights from TANK models," Working Paper.
- DUPOR, B., M. KARABARBOUNIS, M. KUDLYAK, AND M. S. MEHKARI (2023): "Regional Consumption Responses and the Aggregate Fiscal Multiplier," *Review of Economic Studies*, Forthcoming.
- FARHI, E. AND I. WERNING (2016): "Fiscal Multipliers: Liquidity Traps and Currency Unions," Handbook of Macroeconomics, 2, 2417–2492.
- (2017): "Fiscal Unions," American Economic Review, 107(12).
- GALÍ, J. AND T. MONACELLI (2005): "Monetary Policy and Exchange Rate Volatility in a Small Open Economy," *The Review of Economic Studies*, 72, 707–734.
- (2008): "Optimal monetary and fiscal policy in a currency union," *Journal of International Economics*, 76(1).

HAGEDORN, M., I. MANOVSKII, AND K. MITMAN (2019): "The Fiscal Multiplier," NBER Working Paper 25571.

HAUPTMEIER, S., F. HOLM-HADULLA, AND K. NIKALEXI (2023): "Monetary Policy and Regional Inequality," *CEPR Discussion Paper 18319.*

REFERENCES IV

- HAZELL, J., J. HERREÑO, E. NAKAMURA, AND J. STEINSSON (2022): "The Slope of the Phillips Curve: Evidence from U.S. States," *The Quarterly Journal of Economics*, 137, 1299–1344.
- HERREÑO, J. AND M. PEDEMONTE (2022): "The Geographic Effects of Monetary Policy," *Working Paper No.* 22-15, Federal Reserve Bank of Cleveland.
- KAPLAN, G., B. MOLL, AND G. VIOLANTE (2018): "Monetary Policy According to HANK," *American Economic Review*, 108(3).
- KENEN, P. (1969): "The Theory of Optimum Currency Areas: An Eclectic View," *In Monetary Problems of the International Economy, edited by Robert A. Mundell and Alexander K. Swoboda.*
- KENEN, P. AND E. MEADE (2008): "Regional Monetary Integration," Cambridge University Press.
- MANKIW, N. G. AND R. REIS (2006): "Sticky Information in General Equilibrium," NBER Working Paper, 12605.
- MCKINNON, R. (1963): "Optimum Currency Areas," American Economic Review, 53 (4).
- MIRANDA-AGRIPPINO, S. AND H. REY (2020): "U.S. Monetary Policy and the Global Financial Cycle," *The Review of Economic Studies*, 87, 2754–2776.
- MUNDELL, R. (1961): "A Theory of Optimum Currency Areas," American Economic Review, 51 (4)).
- NAKAMURA, E. AND J. STEINSSON (2014): "Fiscal Stimulus in a Monetary Union: Evidence from US Regions," American Economic Review, 104(3).

REFERENCES V

- ——— (2018): "High-Frequency Identification of Monetary Non-Neutrality: The Information Effect," *Quarterly Journal of Economics*, 133(3).
- OBSTFELD, M. AND K. ROGOFF (1995): "Exchange rate dynamics redux," Journal of Political Economy, 102.
- PATTERSON, C. (2023): "The Matching Multiplier and the Amplification of Recessions," *American Economic Review*, 113, 982–1012.
- RAVN, M. AND V. STERK (2020): "Macroeconomic Fluctuations with HANK & SAM: an Analytical Approach," Journal of the European Economic Association, 19(2).
- REY, H. (2013): "Dilemma, Not Trilemma: The Global Financial Cycle and Monetary Policy Independence," *Jackson Hole Symposium Proceedings.*
- WERNING, I. (2015): "Incomplete Markets and Aggregate Demand," NBER Working Paper, 21448.
- WOLF, C. (2021a): "Interest Rate Cuts vs. Stimulus Payments: An Equivalence Result," *NBER Working Paper 29193*.
- ------ (2021b): "The Missing Intercept: A Demand Equivalence Approach," NBER Working Paper 29558.