Optimal Income Redistribution

Árpád Ábrahám University of Bristol

Pavel Brendler University of Bonn

Eva Cárceles-Poveda Stony Brook University

HANK Prague, May 17, 2024

Motivation

- Two major elements of the modern welfare state:
 - Income tax-and-transfer system
 - Pay-as-you-go pension system
- Considerable heterogeneity across countries:
 - US: moderately progressive income tax system, not generous and strongly progressive pension system
 - Europe: progressive income tax system and generous, fairly linear pension system

Motivation

- Two major elements of the modern welfare state:
 - Income tax-and-transfer system
 - Pay-as-you-go pension system
- Considerable heterogeneity across countries:
 - US: moderately progressive income tax system, not generous and strongly progressive pension system
 - Europe: progressive income tax system and generous, fairly linear pension system
- Should both systems operate in tandem to achieve the desired levels of redistribution and insurance?
- Or would it be more efficient to streamline Social Security, as in many European countries?
- What can rationalize these differences? (future research)

What do we do?

- Set-up a state-of-the-art life-cycle model with realistic pension and tax-transfer systems.
- Compute the optimal com bination of the pension system (in terms generosity and progressivity) and income tax progressivity under different welfare criteria.
- Key trade-offs:
 - Pension progressivity distorts labor supply (and hence human capital accumulation) of the high productivity agents more.
 - Pension generosity reduces labor supply distortions but financed by distortionary payroll taxes.
 - Both distort life-cycle savings and retirement decisions.
 - Redistribution within generations through progressivity (of pensions and taxes).
 - Redistribution across current and future generations comes through the time path of distortions.
 - Intergenerational links, welfare objectives, and transitions are key.

Literature

- Optimal Pension Generosity and Progressivity Nishiyama and Smetters (2007 JPE), Huggett and Parra (2010 JPE), Fehr, Kallweit & Kindermann (2013 JEEA), Brendler (2022 RED), Nam (2023)
- Optimal Income Tax Progressivity Heathcote, Storesletten & Violante (2017 QJE), Conesa and Krueger (2007, JME), Conesa, Kitao, & Krueger (2009, AER), Guner, Kaygusuz & Ventura (2023 ECMA), Carroll, Luduvice & Young (2023), MacNamara & Rossi (2023)
- We find significant welfare gains from joint reforms, however results and to the welfare objective.

 Some recent work on the joint income tax and pension systems: Ludwig et al. (2023) → aging & solvency; Brendler (2023 JME) → inverse-optimum approach; Makarski et al (2023) → complementing pension privatization with a tax reform; Kindermann and Puschel (2023) → design pension progressivity like EITC Tran and Zakariya (2023) → Pension progressivity through means testing

• Pension generosity is highly distortionary and creates large distributional conflicts across generations.

- Pension generosity is highly distortionary and creates large distributional conflicts across generations.
- Pension generosity and progressivity are substitutes with income tax progressivity:

- Pension generosity is highly distortionary and creates large distributional conflicts across generations.
- Pension generosity and progressivity are substitutes with income tax progressivity:
 - Providing less insurance through the pension system requires more insurance through the income tax system.
 - Intergenerational preferences determine the balance between overall insurance vs. distortions.

- Pension generosity is highly distortionary and creates large distributional conflicts across generations.
- Pension generosity and progressivity are substitutes with income tax progressivity:
 - Providing less insurance through the pension system requires more insurance through the income tax system.
 - Intergenerational preferences determine the balance between overall insurance vs. distortions.

 \rightarrow For any intergenerational preferences, we find joint reforms that make all current and future cohorts, on average, better off.

Model

Overview

- Overlapping generations with agents live up to max. age J but may die earlier ($\psi_j^{z,v}$ education-, type- and age-specific survival rates).
- Agents enter at age j = 1 with permanent component of productivity v, no assets (a₀=0), and with an education level z ∈ {H, L}.
- Each education level comes with initial skill $h_{1,z}$ and (permanent) learning ability θ_z
- Agents accumulate skills through learning-by-doing (*l* hours worked):

$$h_{j+1,z} = (1 - \delta^h) \cdot h_{j,z} + \theta_z \cdot (h_{j,z} \cdot l)^{\gamma^h}$$

- Retirement is endogenous with penalty for retiring early.
- Agents leave bequests due "joy of giving" preferences.

Worker's budget

• Pre-tax earnings $(w_{z,t} - \text{skill price}, v - \text{fixed effect}, y_j - \text{idios. shock})$:

$$e = w_{z,t} \cdot h_{j,z} \cdot v \cdot y_j \cdot l$$

Worker's budget

• Pre-tax earnings $(w_{z,t} - \text{skill price}, v - \text{fixed effect}, y_j - \text{idios. shock})$:

$$e = w_{z,t} \cdot h_{j,z} \cdot v \cdot y_j \cdot l$$

• Budget constraint ($\lambda_{I,t}$ – income tax policy):

$$a' + (1 + \tau_c)c = (1 + r_t)a + e - \underbrace{\tau_{SS,t} \times \min(cap, e)}_{\text{Soc. Sec. taxes}} - \underbrace{\Psi_t(\iota; \lambda_{I,t})}_{\text{income taxes}}$$

Worker's budget

• Pre-tax earnings $(w_{z,t} - \text{skill price}, v - \text{fixed effect}, y_j - \text{idios. shock})$:

$$e = w_{z,t} \cdot h_{j,z} \cdot v \cdot y_j \cdot l$$

• Budget constraint ($\lambda_{I,t}$ – income tax policy):

$$a' + (1 + \tau_c)c = (1 + r_t)a + e - \underbrace{\tau_{SS,t} \times \min(cap, e)}_{\text{Soc. Sec. taxes}} - \underbrace{\Psi_t(\iota; \lambda_{I,t})}_{\text{income taxes}}$$

• Taxable income: $\iota = r_t a + e - 0.5 \tau_{SS,t} \times \min(cap, e)$

Soc.Sec. deduction

Retiree's budget

Budget constraint (λ_{SS,t} – Social Security policy):

$$a' + (1 + \tau_c)c = (1 + r_t)a + \underbrace{b(\bar{b}_t(\bar{e}; \lambda_{\mathbf{SS}, t}), j^R)}_{\text{pension net of penalty}} - \underbrace{\max\{0, \Psi_t(\iota; \lambda_{I, t})\}}_{\text{income taxes}}$$

 $ar{b}_t$ – normal pension benefit, j^R – retirement age, $ar{e}$ – average lifetime earnings

Retiree's budget

Budget constraint (λ_{SS,t} – Social Security policy):

$$a' + (1 + \tau_c)c = (1 + r_t)a + \underbrace{b(\bar{b}_t(\bar{e}; \lambda_{\mathbf{SS}, \mathbf{t}}), j^R)}_{\text{pension net of penalty}} - \underbrace{\max\{0, \Psi_t(\iota; \lambda_{I, t})\}}_{\text{income taxes}}$$

 \bar{b}_t – normal pension benefit, j^R – retirement age, \bar{e} – average lifetime earnings

• Taxable income:

$$\iota = \underbrace{r_t a}_{\text{asset income}} + \underbrace{b}_{\text{pension}}$$

Household's problem

• Individual state space: $\pmb{x} = (j, v, z, y, h, \bar{e}, a, j^R)$

j – age, v – fixed effect, z – education, y – idios. shock, h – human capital, a – assets, j^R – retirement age, $\bar{e}_{j+1} = [(j-1)\bar{e}_j + \min(e_j, cap)]/j$ – average lifetime earnings

Household's problem

• Individual state space: $\boldsymbol{x} = (j, v, z, y, h, \bar{e}, a, j^R)$

j – age, v – fixed effect, z – education, y – idios. shock, h – human capital, a – assets, j^R – retirement age, $\bar{e}_{j+1} = [(j-1)\bar{e}_j + \min(e_j, cap)]/j$ – average lifetime earnings

• Worker's problem (no decision to retire):

$$V_{t}(\boldsymbol{x}) = \max_{\substack{c,a' \geq 0, \\ l \in [0,1]}} \left\{ u(c,1-l) + \beta \psi_{j}^{z,v} \mathbb{E}_{y'|y} \left[\Gamma_{j+1,t+1}^{z,v} \int V_{t+1}(\boldsymbol{x}_{b}') \Phi_{t+1}^{z,v}(b) db + (1 - \Gamma_{j+1,t+1}^{z,v}) V_{t+1}(\boldsymbol{x}') \right] + (1 - \psi_{j}^{z,v}) q(a') \right\}.$$

 $\Gamma_{j+1,t+1}^{z,v}$: age and type dependent probability of receiving bequests; $\Phi_{t+1}^{z,v}(b)$: the distribution bequests left to type $(z, v) \Rightarrow$ Intergenerational links of types.

Government: Social Security

- Normal pension \bar{b}_t is determined by replacement rate schedule: $\bar{b}_t = R_t(\bar{e}; \lambda_{SS,t}) \cdot \bar{e}$
- Empirical schedule is approximated using:

$$R_t(\bar{e}; \lambda_{\mathbf{SS}, \mathbf{t}}) = \begin{cases} \bar{\lambda}_{SS, t} \times \tilde{e}^{1 - \lambda_{SS, t}} & \text{if } \tilde{e} \ge \tilde{e}_{\min} \\ \\ \bar{\lambda}_{SS, t} \times \tilde{e}_{\min}^{1 - \lambda_{SS, t}} & \text{otherwise} \end{cases}$$

 $\bar{\lambda}_{SS,t}$ – level (generosity), $\lambda_{SS,t}$ – curvature (progressivity), $\tilde{e} = \bar{e}/\mathcal{E}_{t-j+j^R}$ with \mathcal{E}_{t-j+j^R} – economy-wide average lifetime earnings at retirement

- Penalty: $b(\bar{b}, j^R) = (1 \delta^p) \cdot \bar{b} + \left(\frac{j^R J^E}{J^R J^E}\right) \cdot \delta^p \cdot \bar{b}$
- Given $(\bar{\lambda}_{SS,t}, \lambda_{SS,t})$, Social Security tax $\tau_{SS,t}$ adjusts each period to balance pay-as-you-go budget

Statutory replacement rate schedule

Government: Social Security

Government: Income taxation

• Net tax liability (HSV function):

$$\Psi_t(\iota; \bar{\lambda}_{I,t}, \lambda_{I,t}) = \iota - \mathcal{I}_t \cdot (1 - \bar{\lambda}_{I,t}) \cdot (\iota/\mathcal{I}_t)^{1 - \lambda_{I,t}}$$

 $ar{\lambda}_{I,t}$ – income tax level, $\lambda_{I,t}$ – income tax progressivity, \mathcal{I}_t – aggregate taxable income

Government: Income taxation

• Net tax liability (HSV function):

$$\Psi_t(\iota; \bar{\lambda}_{I,t}, \lambda_{I,t}) = \iota - \mathcal{I}_t \cdot (1 - \bar{\lambda}_{I,t}) \cdot (\iota/\mathcal{I}_t)^{1 - \lambda_{I,t}}$$

 $\bar{\lambda}_{I,t}$ – income tax level, $\lambda_{I,t}$ – income tax progressivity, \mathcal{I}_t – aggregate taxable income

- Income tax program runs a separate budget
- Given $\lambda_{I,t}$, income tax level $\overline{\lambda}_{I,t}$ balances the general government budget:

Income taxes + Consumption taxes + Debt issuance = Wasted spending + Debt service

Government: Income taxation

Firms and Equilibrium

• Standard production function allowing imperfect substitutability between skilled and unskilled workers

$$Y_t = ZK_t^{\varpi} \left[\left(N_{L,t}^{\rho} + N_{H,t}^{\rho} \right)^{\frac{1}{\rho}} \right]^{1-\varpi}$$

Firms and Equilibrium

• Standard production function allowing imperfect substitutability between skilled and unskilled workers

$$Y_t = ZK_t^{\varpi} \left[\left(N_{L,t}^{\rho} + N_{H,t}^{\rho} \right)^{\frac{1}{\rho}} \right]^{1-\varpi}$$

- General Equilibrium
 - Labor markets and capital market clear.
 - Budget constraints for Social Security and general government clear.
 - Bequest distributions are internally consistent.
 - Any change in the tax system will trigger a transitional dynamics for the interest rate, wages, the average income tax rates and social security contribution rates.
 - They are key for welfare evaluations.

Calibration and Model Fit

Calibration

- We calibrate the model to the recent US data
- Agents enter the model at age 25
- Tax parameters are set to approximate current US income tax and social security system
- Earnings process is calibrated inside the model to match earnings and income distribution
- Learning by-doing technology is calibrated inside the model to match life-cycle profiles of hourly wages
- "Joy of giving" parameters are set to match the distribution of bequests.

Externally calibrated parameters

Parameter	Description	Value	
Demographics and preferences			
(J, J^E, J^R)	Maximum age, early and normal retirement age	(76, 38, 42)	
$\{\psi_j^{z,v}\}$	Education and income specific age profile of survival probabilities	► Appendix	
n	Population growth rate, %	1.3	
σ	Coefficient of relative risk aversion	2.0	
Labor productivity			
γ^h	Elasticity of human capital production	0.7	
(ho_y,σ_ϵ^2)	Persistence and variance of $AR(1)$ shock	(0.979, 0.015)	
(π_z,π_v)	Inter-generational transmission of labor productivity	See text	
Production			
$(arpi,\delta)$	Capital share and capital depreciation, $\%$	(46.0, 6.0)	
ho	Elasticity of substitution is $1/(1- ho)$	0.285	
Government policies			
λ_I	Income tax progressivity	0.216	
λ_{SS}	Pension system progressivity	1.420	
$ au_c$	Consumption tax, %	4.1	
(dy,gy)	Debt-to-GDP and wasted spending-to-GDP ratio, $\%$	(100.0, 7.8)	

14 / 37

Internally calibrated parameters

Parameter	Description and target	Value	
Preferences			
β	Discount factor (Capital/GDP $= 3.0$)	0.99	
γ	Weight on consumption (average hours $= 0.40$)	0.318	
(ϕ_1,ϕ_2,η)	"Joy of giving"' (Bequest distribution)	(8.0, 4.0, 2.3)	
Labor productivity			
$\left(h_{1,H},h_{1,L} ight)$	Initial skill levels (hourly wage profiles)	(1.59, 0.45)	
δ^h	Skill depreciation, $\%$ (hourly wage profiles)	5.9	
σ_v^2	Var. of fixed effect (Gini for pre-gov. earnings = 0.40) $$	0.021	
Production			
Z	TFP (average wage $= 1.0$)	0.263	
Government policies			
$ar{\lambda}_{SS}$	Replacement rate level ($ au_{SS}=10.6\%$)	0.413	
$ ilde{e}_{\min}$	Lowest bend point	0.05	
cap	Max. taxable earnings (taxable earnings $>$ cap $=$ 8%)	1.11	
δ^p	Penalty for early retirement (retired at age $62 = 26\%$)	0.167 Details	

14 / 37

Model fit: Life-cycle wage profiles

• Human capital accumulation in the model achieves a good fit of age-earnings profiles

Model fit: Residual variation in earnings

• Idios. shocks match well the increase of earnings heterogeneity over the life-cycle

Model fit: Inequality (Lorenz curves)

Model achieves a good fit of pre-government earnings and income distributions

• We calibrate altruism (ϕ_1,ϕ_2,η) to match the distribution of bequests lacksquare

Quantitative Experiments

Quantitative experiments

• Unanticipated, permanent, an potentially joint social security and income tax reforms:

- New pension system is only applied to agents that are currently working
- New pension system is phased in linearly during forty years. \Rightarrow Only a new labor market entrant takes full advantage.
- New income tax system applies to everyone immediately
- Average income tax rate adjusts every period to satisfy the government budget
- Payroll taxes adjust every period to make sure the Social Security budget is satisfied
- We compute the full transition to the new steady state for all reforms

Social Welfare Function

- The initial (calibrated) policy is ${f \Lambda}^0$
- At time t, government chooses constant future policy $\Lambda^{\star} = (\bar{\lambda}_{SS}, \lambda_{SS}, \lambda_I)$ given by:

$$\mathbf{\Lambda}^{\star} = \arg \max_{\mathbf{\Lambda}} W(\mathbf{\Lambda}^{0}, \mathbf{\Lambda})$$

- Two Social Welfare Functions:
 - Current Cohorts:

$$CG: W = \sum_{j} \int V_t(\boldsymbol{x}; \boldsymbol{\Lambda}^0, \boldsymbol{\Lambda}) dF_{t,j}$$

welfare of current generations

• Newborn in a Final Steady State

$$FG: W = \underbrace{\int V_{\infty}(\boldsymbol{x^{nb}}; \boldsymbol{\Lambda}^0, \boldsymbol{\Lambda}) dF_{\infty,j=1}}_{ ext{welfare of long run newborn}}$$
Constraints

- Given the initial conditions, the new policy triggers a new equilibrium (transition to a new steady state).
- The government may face some "Pareto Constraints" when setting the policies:
 - No current cohort is worse off:

$$\int V_t(\boldsymbol{x};\boldsymbol{\Lambda}^0,\boldsymbol{\Lambda}) dF_{t,j} \geq \int V_t(\boldsymbol{x};\boldsymbol{\Lambda}^0,\boldsymbol{\Lambda^0}) dF_{t,j} \; \forall j$$

• No future cohort is worse off:

$$\int V_t(\boldsymbol{x^{nb}}; \boldsymbol{\Lambda}^0, \boldsymbol{\Lambda}) dF_{t,j=1} \geq \int V_t(\boldsymbol{x^{nb}}; \boldsymbol{\Lambda}^0, \boldsymbol{\Lambda}^0) dF_{t,j=1} \; \forall t > 1$$

Findings

Optimal policy

	Joint policy			CEV, %	
	$ar{\lambda}_{SS}$	λ_{SS}	λ_I	Alive	Future
Status Quo	0.413	1.420	0.216	_	_

Optimal policy

	Joint policy			CE\	1, %
	$ar{\lambda}_{SS}$	λ_{SS}	λ_I	Alive	Future
Status Quo	0.413	1.420	0.216	_	-
Objective: Long Run Welfare (FG)					
– Unconstrained	0.227	0.488	0.221	-3.519	2.314

- Redistribution/Insurance has declined (slightly increased) through the pension system (tax system).
- Welfare gains are much higher than those that can be achieved by income tax reforms.

Average replacement rates

• Not generous and regressive pension system

• Reform reduces distortions and hence increases output/consumption in the long run.

• Reduced level of pensions lowers distortions on savings and on labor supply.

• Regressive pension system boosts labor supply further.

• Less redistribution through the pension system requires slightly more redistribution through the income tax system.

Welfare effects by cohort (CEV, %)

• Reform benefits future cohorts at the welfare cost of current generations

Only pension generosity $\bar{\lambda}_{SS} = 0.227$

Full reform

Optimal policy

	Joint policy			CEV, %	
	$ar{\lambda}_{SS}$	λ_{SS}	λ_I	Alive	Future
Status Quo	0.413	1.420	0.216	_	-
Objective: Long Run Welfare (FG)					
 Unconstrained 	0.227	0.488	0.221	-3.519	2.314
Objective: Current Generations (CG)					
 Unconstrained 	0.800	0.40	0.184	7.426	-6.730

• Pension generosity Doubles.

Inter-generational redistribution

• Pension generosity $\bar{\lambda}_{SS}$ achieves most welfare gains for alive cohorts .

• Current generations transfer resources from the (distant) future.

Optimal policy

	Joint policy			CEV, %	
	$ar{\lambda}_{SS}$	λ_{SS}	λ_I	Alive	Future
Status Quo	0.413	1.420	0.216	_	-
Objective: Long Run Welfare (FG) – Unconstrained	0.227	0.488	0.221	-3.519	2.314
Objective: Current Generations (CG) – Unconstrained	0.800	0.40	0.184	7.426	-6.730

• Is it feasible to design reform that maximizes the welfare of alive and does not make any cohort, on average, worse off?

Optimal policy

.

.

	Joint policy			CEV, %	
	$ar{\lambda}_{SS}$	λ_{SS}	λ_I	Alive	Future
Status Quo	0.413	1.420	0.216	-	-
Objective: Long Run Welfare (FG)					
– Unconstrained	0.227	0.488	0.221	-3.519	2.314
Objective: Current Generations (CG)					
 Unconstrained 	0.800	0.40	0.184	7.426	-6.730
– No cohort is worse off	0.531	1.303	0.140	2.558	0.106

• Is it feasible to design reform that maximizes the welfare of alive and does not make any cohort, on average, worse off? **YES**

Average replacement rates

• Slightly more generous and less progressive pension system

Welfare effects: Decomposition

• Generosity is distortionary and cannot achieve Pareto-improvement across all cohorts

Welfare effects: Decomposition

• Less progressive pension system boosts economy in the long run

Welfare effects: Decomposition

• Providing more insurance/redistribution through the pension system allows to provide less insurance/redistribution in the income tax system

Optimal policy

.

	Joint policy			CEV, %	
	$ar{\lambda}_{SS}$	λ_{SS}	λ_I	Alive	Future
Status Quo	0.413	1.420	0.216	_	_
Objective: Long Run Welfare (FG)					
 Unconstrained 	0.227	0.488	0.221	-3.519	2.314
– No cohort is worse off	0.404	1.084	0.169	0.203	1.111
Objective: Current Generations (CG)					
 Unconstrained 	0.800	0.40	0.184	7.426	-6.730
– No cohort is worse off	0.531	1.303	0.140	2.558	0.106

• There exist reforms of the pension system that make all current and future cohorts, on average, better off (regardless of the SWF)

Average replacement rates

• Reducing distortion through all channels brings all current cohorts on board.

Optimal joint policy

	Joint policy			CE\	1, %
	$ar{\lambda}_{SS}$	λ_{SS}	λ_I	Alive	Future
Status Quo	0.413	1.420	0.216	-	_
Objective: Long Run Welfare (FG)					
- Unconstrained	0.227	0.488	0.221	-3.519	2.314
– No cohort is worse off	0.404	1.084	0.169	0.203	1.111
– No Type 1 is worse off	0.285	2.100	0.159	-2.285	1.362
- No current type is worse off	0.448	1.535	0.185	0.887	0.272
Objective: Current Generations (CG)					
- Unconstrained	0.800	0.400	0.184	7.426	-6.730
– No cohort is worse off	0.531	1.303	0.140	2.558	0.106
– No Type 1 is worse off	0.603	2.026	0.175	3.156	-3.839
– No future type is worse off	0.427	1.643	0.181	0.442	0.426

Takeaways

- Unconstrained reforms make extreme changes in generosity, causing large intergenerational redistribution; distortions reduce by lowering pension progressivity.
- When redistribution across generations is limited, the direction of pension system redesign is the same, but less redistribution through the tax system is needed.
- When redistribution "in the wrong direction" needs to be avoided, pension progressivity becomes the desirable instrument.
- When both intergenerational and cross-sectional redistribution is limited, pension progressivity increases, compensated by a significant decline in tax progressivity.
- In all cases, the joint redesign of the pension and the tax system brings much larger welfare gains than only reoptimising the tax system.

Political support

Reform	Support, %
Objective: Long Run Welfare (FG)	
– Unconstrained	34.3
– No cohort is worse off	57.5
– No Type 1 is worse off	21.4
– No future type is worse off	16.4
– No current type is worse off	82.9
Objective: Current Generations (CG)	
– Unconstrained	81.5
– No cohort is worse off	73.4
– No Type 1 is worse off	62.2
– No future type is worse off	73.3
– No current type is worse off	88.2

Optimal pension redesign

	Pension redesign			CEV	/, %
	$ar{\lambda}_{SS}$	λ_{SS}	λ_I	Alive	Future
Status Quo	0.413	1.420	0.216	-	-
Objective: Long Run Welfare (FG)					
– Unconstrained	0.210	0.499	0.216	-4.049	2.250
– No cohort is worse off	0.405	0.492	0.216	0.455	0.523
– No Type 1 is worse off	0.263	2.300	0.216	-3.519	-0.740
– No future type is worse off	0.232	1.029	0.216	-3.895	1.869
 No current type is worse off 	0.485	1.408	0.216	1.309	-1.159
Objective: Current Generations (CG)					
– Unconstrained	0.800	0.400	0.216	7.293	-7.551
– No cohort is worse off	0.435	0.423	0.216	1.101	0.059
– No Type 1 is worse off	0.571	1.863	0.216	2.189	-4.960
– No future type is worse off	0.416	1.419	0.216	0.052	0.062
- No current type is worse off	0.800	0.400	0.216	7.293	-7.551

Conclusions

- The optimal joint pension and tax policy critically depends on the social welfare criterion.
- When both intergenerational and within generation redistribution is limited, the optimal policy increases pension progressivity and reduces income tax progressivity.
- The welfare gains from only adjusting the tax or the pension system are significantly smaller compared to the joint design.

Next Steps

- Examine how particular elements of the tax/pension system (cap, tax credit for SS contributions, taxation of pensions, early retirement) affect our optimal policies.
- Analyse more where the distortions are coming from: labor supply/human capital vs. life-cycle savings and how they interact with redistribution needs.
- Is there a chance for a fully Pareto optimal reform?
- Why pension progressivity is more distortionary than income tax progressivity?

Optimal Income Redistribution

Árpád Ábrahám University of Bristol

Pavel Brendler University of Bonn

Eva Cárceles-Poveda Stony Brook University

HANK Prague, May 17, 2024

Appendix

Survival probability rates

Conditional survival probability rates in the model and data • Back

Mortality rates

Conditional mortality rates by income in the model and data • Back

Bequest distribution

Age profile of probabilities to receive a bequest in the model and data igvee Back

Notes: Empirical data comes from SCF (2001–2019).

Bequest distribution

Bequest distribution in the model and data Back

Notes: Bequests are normalized by the economy-wide median pre-government income. Empirical data comes from Hurd and Smith (2001).

Bequest distribution

Bequest distribution by type in the model **Back**

Notes: Bequests are normalized by the economy-wide average wealth.